Chapter 5
Modeling with Differential Equations
5.3 Periodic Motion
Exercises
-
Calculate the first and second derivatives of each of the following functions.
a. \(y=10t^6-4t^3+\pi\) b. \(u=\frac{1}{w^3}\) c. \(z=t^{7/5}\) d. \(p=t\,e^{-t}\) - Calculate each of the following derivatives.
a. \(\frac{d}{dx}\frac{\sin\,x}{x}\) b. \(\frac{d}{dx}\left(\cos\,x\right)^3\) c. \(\frac{d}{dt}\,\ln \sqrt{3t-9}\) - Calculate each of the following second derivatives.
a. \(\frac{d^2}{d \theta^2}\,\sin\,\theta\) b. \(\frac{d^2}{d \theta^2}\,\cos\,\theta\) - Calculate each of the following derivatives.
- \(\frac{d}{dt}\,e^{2t}\sin\,t\)
- \(\frac{d^2}{dt^2}\,e^{2t}\,\sin\,t\)
- \(\frac{d}{dt}\,e^{2t}\,\cos\,t\)
- \(\frac{d^2}{dt^2}\,e^{2t}\cos\,t\)
- \(\frac{d}{dt}\,\ln t\,\sin\,t\)
- \(\frac{d^2}{dt^2}\,\sin^2\,t\)
- \(\frac{d}{dy}\,\sin\,y\,\cos\,y\)
- \(\frac{d^2}{dy^2}\,\sin\,y\,\cos\,y\)
- Find the derivative of each of the following functions.
- \(y=\sin(2t)-3\cos\,t\)
- \(z=\frac{1}{1+7t}\)
- \(y=(\sin\,3t)(\cos\,2t)\)
- \(y=5^x\)
- \(z=\frac{2}{t-1}\)
- \(y=x^3\sin\,2x\)
- Find the derivative of each of the following functions.
- \(y=\cos^2t\)
- \(y=\cos{(t^2)}\)
- Find the derivative of each of the following functions.
- \(y=\ln(x^{10}-3x)^{1/3}\)
- \(y=\ln(e^x)\)
- \(y=\frac{x^2}{1+2x}\)
- \(f(x)=3e^{-4x}\)
- \(y=\frac{\cos\,x+x^2}{x^3}\)
- \(f(x)=\sin(x^2)\)
- \(y=\frac{\sin\,x}{\cos\,x+1}\)
- \(y=y(x)\), where \(y^2+x^2=3x+7\)
- Find all antiderivatives of each of the following functions.
- \(e^{2t}\)
- \(\frac{1}{t}\)
- \(t^n\), where \(n\) is a positive integer
- \(\sin\,2t\)
- \(\frac{1}{t^2}\)
- \(\frac{2}{t-1}\)
- \(\cos\,t\)
- \(\frac{1}{1+7t}\)
- Given the initial value problem
\(\frac{dy}{dt}=2-\cos(\pi y)\) with \(y(0)=1\),
use Euler's Method with \(\Delta t=0.2\) to approximate \(y(1)\). - Find the maximum and minimum values of \(y=\sin\,x+\cos\,x\) on the interval \([0,\pi]\).