Chapter 5
Modeling with Differential Equations





WeBWorK5.3 Periodic Motion

Exercises

  1. Calculate the first and second derivatives of each of the following functions.
    a. \(y=10t^6-4t^3+\pi\) b. \(u=\frac{1}{w^3}\)
    c. \(z=t^{7/5}\) d. \(p=t\,e^{-t}\)
  2. Calculate each of the following derivatives.
    a. \(\frac{d}{dx}\frac{\sin\,x}{x}\)
    b. \(\frac{d}{dx}\left(\cos\,x\right)^3\)
    c. \(\frac{d}{dt}\,\ln \sqrt{3t-9}\)
  3. Calculate each of the following second derivatives.
    a. \(\frac{d^2}{d \theta^2}\,\sin\,\theta\) b. \(\frac{d^2}{d \theta^2}\,\cos\,\theta\)
  4. Calculate each of the following derivatives.
    1. \(\frac{d}{dt}\,e^{2t}\sin\,t\)
    1. \(\frac{d^2}{dt^2}\,e^{2t}\,\sin\,t\)
    1. \(\frac{d}{dt}\,e^{2t}\,\cos\,t\)
    1. \(\frac{d^2}{dt^2}\,e^{2t}\cos\,t\)
    1. \(\frac{d}{dt}\,\ln t\,\sin\,t\)
    1. \(\frac{d^2}{dt^2}\,\sin^2\,t\)
    1. \(\frac{d}{dy}\,\sin\,y\,\cos\,y\)
    1. \(\frac{d^2}{dy^2}\,\sin\,y\,\cos\,y\)
  5. Find the derivative of each of the following functions.
    1. \(y=\sin(2t)-3\cos\,t\)
    1. \(z=\frac{1}{1+7t}\)
    1. \(y=(\sin\,3t)(\cos\,2t)\)
    1. \(y=5^x\)
    1. \(z=\frac{2}{t-1}\)
    1. \(y=x^3\sin\,2x\)
  6. Find the derivative of each of the following functions.
    1. \(y=\cos^2t\)
    1. \(y=\cos{(t^2)}\)
  7. Find the derivative of each of the following functions.
    1. \(y=\ln(x^{10}-3x)^{1/3}\)
    1. \(y=\ln(e^x)\)
    1. \(y=\frac{x^2}{1+2x}\)
    1. \(f(x)=3e^{-4x}\)
    1. \(y=\frac{\cos\,x+x^2}{x^3}\)
    1. \(f(x)=\sin(x^2)\)
    1. \(y=\frac{\sin\,x}{\cos\,x+1}\)
    1. \(y=y(x)\), where \(y^2+x^2=3x+7\)
  8. Find all antiderivatives of each of the following functions.
    1. \(e^{2t}\)
    1. \(\frac{1}{t}\)
    1. \(t^n\), where \(n\) is a positive integer
    1. \(\sin\,2t\)
    1. \(\frac{1}{t^2}\)
    1. \(\frac{2}{t-1}\)
    1. \(\cos\,t\)
    1. \(\frac{1}{1+7t}\)
  9. Given the initial value problem

    \(\frac{dy}{dt}=2-\cos(\pi y)\)   with   \(y(0)=1\),

    use Euler's Method with \(\Delta t=0.2\) to approximate \(y(1)\).
  10. Find the maximum and minimum values of \(y=\sin\,x+\cos\,x\) on the interval \([0,\pi]\).
Go to Back One Page Go Forward One Page

 Contents for Chapter 5