Chapter 8
Integral Calculus and Its Uses
8.6 Using a Computer Algebra System to Integrate
Exercises
These exercises are exactly the same as those in Section 8.4, but the instructions are different. Use one or more of the following tools to evaluate each of the following integrals (or find antiderivatives in Exercise 4). Be sure to check your answers in the most appropriate way you can think of. Note that the each tool expects a function of \(x\).
- \(\displaystyle\int x^2 \sqrt{1+x^3}\,dx\)
- \(\displaystyle\int\,t\,e^{-\frac{t^2}{2}}\,dt\)
- \(\displaystyle\int\,\sin^2 \theta\,d \theta\)
- \(\displaystyle\int\,x \sqrt{x^2+2} \,dx\)
- \(\displaystyle\int\,\cos^2 x\,\sin\,x\,dx\)
- \(\displaystyle\int\,x \sqrt{9-x^2}\,dx\)
- \(\displaystyle\int\,\frac{x}{1+x^2}\,dx\)
- \(\displaystyle\int\,\frac{x}{\sqrt{1+x^2}}\, dx\)
- \(\displaystyle\int\,\sqrt{1-\frac{x}{4}}\,dx\)
- \(\displaystyle\int\,\frac{x}{\sqrt{9-x^2}}\,dx\)
- \(\displaystyle\int\,\sqrt{9-x^2}\,dx\)
- \(\displaystyle\int\,\frac{x^2}{\sqrt{9-x^2}} \,dx\)
- \(\displaystyle\int_0^{\,1} x^2 \sqrt{1+x^3}\,dx\)
- \(\displaystyle\int_0^{\,1}\, t\, e^{-\frac{t^2}{2}} \,dt\)
- \(\displaystyle\int_0^{\,\pi}\,\sin^2 \theta \,d \theta\)
- \(\displaystyle\int_0^{\,1}\,x \sqrt{x^2+2} \,dx\)
- \(\displaystyle\int_0^{\,\pi}\,\cos^2 x\, \sin\,x \,dx\)
- \(\displaystyle\int_0^{\,1}\,x \sqrt{9-x^2} \,dx\)
- \(\displaystyle\int_0^{\,1}\,\frac{x}{1+x^2} \,dx\)
- \(\displaystyle\int_0^{\,1}\,\frac{x}{\sqrt{1+x^2}} \,dx\)
- \(\displaystyle\int_{-1}^{\,1}\,\sqrt{1-\frac{x}{4}} \,dx\)
- \(\displaystyle\int_0^{\,1}\,\frac{x}{\sqrt{9-x^2}} \,dx\)
- \(\displaystyle\int_0^{\,1}\,\sqrt{9-x^2} \,dx\)
- \(\displaystyle\int_0^{\,1}\,\frac{x^2}{\sqrt{9-x^2}} \,dx\)
a. \(\displaystyle\int\,t\,\sin\,2t\,dt\) b. \(\displaystyle\int\,t^2\,\sin\,2t\,dt\) c. \(\displaystyle\int\,t^3\,\sin\,2t\,dt\) d. \(\displaystyle\int\,\ln\,t\,dt\) e. \(\displaystyle\int\,t\, \ln\,t\,dt\) f. \(\displaystyle\int\,\sin^{-1} t\,dt\) g. \(\displaystyle\int\,t\,sin^{-1} t\,dt\) - Find an antiderivative for each of the following functions.
a. \(\displaystyle\frac{\theta}{3}\,\sin\,\theta\) b. \(\displaystyle\theta\,\sin\,\frac{\theta}{3}\) c. \(\sin^{-1}\,3x\) d. \((t-2) e^{-t}\) e. \((t^2-2) e^{-t}\) f. \(x\,\sin^{-1}\,3x\)
a. \(\displaystyle\int\,\frac{\cos\,t} {2+\sin\,t} dt\) b. \(\displaystyle\int\,\theta^2\,\cos\,2 \theta\,d \theta\) c. \(\displaystyle\int\,\tan^{-1} 2x\,dx\) d. \(\displaystyle\int\,x^2\,\tan^{-1} 2x\,dx\) e. \(\displaystyle\int\,x \sqrt{x+7}\,dx\) f. \(\displaystyle\int\,x \sqrt{x^2+7}\,dx\) g. \(\displaystyle\int\,\frac{\ln\,x}{x}\, dx\) h. \(\displaystyle\int\,u\,e^u\,du\) i. \(\displaystyle\int\,u\,e^{u^2}\,du\)
a. \(\displaystyle\int_0^{\,2 \pi} \frac{\cos\,t}{2+\sin\,t} dt\) b. \(\displaystyle\int_0^{\,\pi}\,\theta^2 \,\cos\,2 \theta\,d \theta\) c. \(\displaystyle\int_0^{\,1/2}\tan^{-1} 2x\,dx\) d. \(\displaystyle\int_0^{\,1/2}x^2\, \tan^{-1} 2x\,dx\) e. \(\displaystyle\int_0^{\,1} x \sqrt{x+7} \,dx\) f. \(\displaystyle\int_0^{\,1} x \sqrt{x^2+7}\,dx\) g. \(\displaystyle\int_1^{\,2}\, \frac{\ln\,x}{x}\,dx\) h. \(\displaystyle\int_0^{\,1} u\,e^u\,du\) i. \(\displaystyle\int_0^{\,1} u\,e^{u^2} \,du\)
a. \(\displaystyle\int_0^{\,1} x^2 \sqrt{4x^3+2}\,dx\) b. \(\displaystyle\int\,\left(t^2+\sin\,3t \right)\,dt\) c. \(\displaystyle\int\,\frac{7}{\sqrt{s+1}}\,ds\) d. \(\displaystyle\int\,\frac{1}{x^2+4} \,dx\) e. \(\displaystyle\int_3^{\,7}\, \frac{4}{2y+1}\,dy\) f. \(\displaystyle\int_{-\pi/4}^{\,\pi/4} \,\cos\,2x\,dx\) g. \(\displaystyle\int_0^{\,2}\,e^{-0.3t} \,dt\) h. \(\displaystyle\int\, 2x\left(1+x^2\right)^{3/4} dx\) i. \(\displaystyle\int\,\sqrt{1-4w^2} \,dw\) j. \(\displaystyle\int_0^{\,\pi/4}\, \sin^2\,6 \theta\,d \theta\) k. \(\displaystyle\int_{-\pi}^{\,\pi}\, \cos^2\,3t\,dt\) l. \(\displaystyle\int\,t\,e^{5.3t}\,dt\) m. \(\displaystyle\int_0^{\,1}\,t\,e^{5.3t} \,dt\) n. \(\displaystyle\int\,(t+3)\,e^{5.3t}\, dt\) o. \(\displaystyle\int\,t\,\cos\,2t\,dt\) p. \(\displaystyle\int\, t^2\,\sin\,2t\,dt\) q. \(\displaystyle\int_0^{\,\pi/2}\,t^2 \,\sin\,2t\,dt\) r. \(\displaystyle\int_0^{\,1}\,\frac{x}{\left(1+x^2\right)^2}\,dx\)