
Introduction: Getting Started

This guide is designed to help a user who is new to using WeBWorK (WW). In this document, you will

find out how to create a class list, make homework sets, edit existing problems, etc. Part 1 covers the

basics, Part 2 deals with how to do basic edits on existing problems, Part 3 is a collection of advanced

problem editing tips, and Part 4 will lead you into WeBWorK 's online documentation. A Test Set of

problems has been prepared as a companion to this guide, containing different kinds of sample

problems. We will explain in Part 4 how to access the Test Set.

Part 1: The Basics

Section 1.1: Creating a Class List
This section will walk you through creating a class list for your class. Upon logging in to WebWork you

will see all the problem sets for your class (unless you have not created any problem sets).

Step 1 Select the Classlist Editor (Exhibit 1.1) option in the main menu box. (The Main Menu

box is on the left hand side of the screen, directly under the WebWork Log.)

Step 2 Select the “Add___ student(s)” (Exhibit 1.1) radio button. (This is the 7th option down.)

Step 3 Type in the number of student that will be in the course and click the “Take Action!”

button. (Exhibit 1.1)

Step 4 Enter student(s') information and click “Add Students”

Exhibit 1.1

Step 1

Step 2

Step 3

Editing A Class List

Change Permission Level

By default each new user that is added will be added as a student, but this can be changed. For

example, if one of the users is TA then they should have more permissions than a student.

Step 1 Select user(s) that need to have their permission level changed.

Step 2 Select the “Editing Selected Users” radio button. (3rd from the top)

Step 3 Click the “Take Action!” button.

Step 4 Change the permission level by selecting the drop down menu and the Change

Permission Level.

Step 5 Select the “Save Changes” radio button and then select “Take Action.”

Different Permission Levels

 Guest

 Will allow a user to log in.

 Student

 Will allow a user to work on problem sets that have been assigned to them.

 Login proctor

 Grade Proctor

 TA

 Will allow a user to assist with the problems. This user will also have limited

access to the class list.

 Professor

 Will allow a user to have full access to the all the WeBWorK features.

Section 1.2: Creating a Problem Set
There are two ways to create a problem set: under the Hmwk Sets Editor menu option or under the

Library Browser menu option.

Option 1: Hmwk Sets Editor

Step 1 Click the “Hmwk Sets Editor” link from the Main Menu box.

Step 2 Select the “Create a new set named____” radio button and give the set a name.

 Selecting “as a new empty set” will create an empty set with the name that you

gave it.

 Selecting “as a duplicate of the first selected set” will create a problem set that is

an exact replica of a problem set that has been previously selected.

Step 3 Select the “Take Action” button.

Step 4 Once the problem set has been created, it is possible to select problems to put into the

new problem set.

 Click the Library Browser menu option and select problems to add to your

problem set.

 Problems specifically for the CMA book can be found by selecting the CMA button.

(See below for the step-by-step way to select and add problems.)

Exhibit 1.2: Option 1 for creating a problem set

Option 2: Through Library Browser

Step 1 Click the “Library Browser” link from the Main Menu box.

Step 2 Enter the name for the problem set and select the “Create a New Set in this Course.”

Step 3 Once the problem set has been created, it is possible to select problems to put into the

new problem set.

 Problems specifically for the CMA book can be found by selecting the CMA button.

(See below for the step-by-step way to select and add problems.)

Step 1

Step 2

Step 3

Exhibit 1.3 Option 2 for Creating a Problem Set

Section 1.3: Adding Problems to a Problem Set
Step 1 Click the Library Browser menu option.

Step 2 Select from the “Add problems to Target Set” drop down menu the problem set you

want to add problems to.

Step 3 Select the location that you want the problems to come from.

 The problems for the Calculus: Modeling & Application text book are under the

CMA button.

 If you want to view all the problems in the library select the National Problem

Library button. See more on the National Problem Library in Part 4:

Documentation.

Step 4 Next you want to select the chapter and section the problems should come from. Then

click View Problems.

Step 5 Reviewing the list of problems for the corresponding chapter and section, you have two

options for each problem:

 The first check box: if selected, the problem will not show up after the Update

Set button is clicked.

 The second check box: if selected, the problem will be added to the selected

problem set.

Step 6 After the desired check boxes are selected, click the Update Set button at the bottom or

top of the page.

Step 1
Step 2

Exhibit 1.4 Adding Problems to a Problem Set

Section 1.4: Assigning Problem Set to Students
Now it’s time to assign the Problem set to students.

Step 1 Click the “Hmwk Sets Editor” link from the Main Menu box.

Step 2 Find the desired Problem Set and select the link in the “Edit Assigned User” column.

(This is the fourth column from the left. It should say “0/out of the # of students”)

Step 3 Select the users for whom the problem set should be assigned to and click the Save

button.

Step 1

Step 2

Step 6

Part 2: Minor Tweaks
This section will give tips for making minor tweaks to existing problems.

Section 2.1: Erasing part of a problem
In order to edit an existing problem, you must create a duplicate of the problem locally.

Step 1 When looking at the problem you want to edit there will be an “Edit this problem” link.

Step 2 Select the radio button that says “Save as [TMPL]/local/Problem name” and the second

of the three options that are under this one. It will say, “and append to end of set (Set

Name).”

Step 3 Click the Take Action button.

Exhibit 2.1 Creating a duplicate problem locally

This will add a new problem to the end of your problem set named local/Problem Name. A green bar

will appear and will notify you that the new problem has been added. Once the problem is local it can be

edited. Also keep in mind that if you want to rename the problem, you can repeat these steps. Just

delete the current name that is in the text box and put a new name in.

Now you can erase the undesired part of the problem.

Step 4 Go to the new problem. (It will be the last problem of the problem set.)

Step 5 Select the “Edit this Problem” link.

Step 6 Locate the unneeded section of the problem and delete it.

Step 7 The select the “Save to [PROBLEM NAME] and View” radio button. (This is the third

radio button.)

Step 8 Click the Take Action button.

Exhibit 2.2 Saving changes

Part 3: More Advanced Tweaks

Section 3.1: Randomizing Problems

Now that you know how to delete and add parts to existing problems, a more complicated (but very
useful) tweak is also available: randomizing certain numbers in problems. In a randomized problem,
each student gets a slightly different problem from the rest. This way students can help one another
solve problems instead of just copying answers from one homework set to another.

For instance, it is possible to modify the blank problem template so that the student can enter a
value for 1, 3 or the square root of 2 instead of pi—and not only that, but each student will get a
different value to enter.

What follows is a modified version of the blank problem template, with the altered parts
highlighted. Explanation of how to apply this to more advanced problems follows.

##DESCRIPTION
Algebra problem: true or false for inequality
##ENDDESCRIPTION

##KEYWORDS('algebra', 'inequality', 'fraction')

DBsubject('Algebra')
DBchapter('Fundamentals')
DBsection('Real Numbers')
Date('6/3/2002')
Author('')
Institution('')
TitleText1('Precalculus')
EditionText1('3')
AuthorText1('Stewart, Redlin, Watson')
Section1('1.1')
Problem1('22')

DOCUMENT();

loadMacros(
 "PGstandard.pl", # Standard macros for PG language
 "MathObjects.pl",
 #"source.pl", # allows code to be displayed on certain sites.
 #"PGcourse.pl", # Customization file for the course
);

Print problem number and point value (weight) for the problem
TEXT(beginproblem());

Show which answers are correct and which ones are incorrect

$showPartialCorrectAnswers = 1;

Setup

Context("Numeric");
$a=random(1,3,5);
The line of code above will generate either a 1, a 3, or a 5 wherever $a is placed in the problem. There is
no limit to the number of random numbers that can be used, but each random number generator must
be labeled differently. If you wanted two random numbers in a problem, for instance, the first would be
$a, and the second might be something like $b=random(2,4,6).

Text

Context()->texStrings;
BEGIN_TEXT

Enter a value for \($a\) $BR $BR
\{ans_rule(40)\}

END_TEXT
Context()->normalStrings;

Answers

ANS(num_cmp($a));
Since $a is a number, the answer should be in ANS(num_cmp()); form. If the answer were a function, it
would be in ANS(fun_cmp()); form.

Step 1 Create a blank problem, or add a problem similar to the one you wish to modify to your

problem set. (It will be the last problem of the problem set.)

Step 2 Select the “Edit this Problem” link.

Step 3 Locate the relevant sections of the problem and revise them, adding in random

elements to the text of the problem itself as needed.

Step 4 The select the “Save to [PROBLEM NAME] and View” radio button. (Third radio button.)

Problems 2, 3 and 4 of the Test Set, which is a companion to this guide, all give examples of randomized
problems, some with multiple randomized numbers. The problem "MoreAdvancedTweaks.pg" is the
problem above.

Section 3.2: Variables

Another useful tweak is adding variables themselves to a WebWork problem. WebWork will
recognize x and y easily enough, but for problems with more than two variables, or for problems with
variables that aren't x and y, a different method must be adopted. Fortunately, this method is far
simpler than randomizing.

The problem given below is two-part. The first part of the problem asks for a number, the
second, for a generalized formula involving the variable c. Writing these variables into the problem does
not pose significant challenges, but defining the answer in terms of c can:

##DESCRIPTION
Algebra problem: true or false for inequality
##ENDDESCRIPTION

##KEYWORDS('algebra', 'inequality', 'fraction')

DBsubject('Algebra')
DBchapter('Fundamentals')
DBsection('Real Numbers')
Date('6/3/2002')
Author('')
Institution('')
TitleText1('Precalculus')
EditionText1('3')
AuthorText1('Stewart, Redlin, Watson')
Section1('1.1')
Problem1('22')

DOCUMENT();

loadMacros(
 "PGstandard.pl", # Standard macros for PG language
 "MathObjects.pl",
 #"source.pl", # allows code to be displayed on certain sites.
 #"PGcourse.pl", # Customization file for the course
);

TEXT(beginproblem());
$showPartialCorrectAnswers = 1;

TEXT(EV2(<<EOT));

What is the average value of the function \(f(x)=7\) for \(x\) greater than or equal to \(-2\) and less than
or equal to \(3\)? \{ ans_rule(35) \} $BR $BR
What is the average value of a constant function \(f(x)=c\) on the interval \([a,b]\)?

EOT
$ans = 7;
ANS(num_cmp($ans));

TEXT(EV2(<<EOT));
What is the average value of a constant function \(f(x)=c\) on the interval \([a,b]\)? \{ ans_rule(35) \}
EOT
ANS(fun_cmp("c", 'var'=>['c']));

ENDDOCUMENT();

This problem is in the Test Set and is named "Defining Variables.pg." (This is #5 in the Test Set.)

Any number of variables may be added by tweaking the code very slightly. If you wanted an answer

involving a, x, and c, for example, all you'd need to do would be to add these to the 'var': ANS(fun_cmp(

"a+x+c", 'var'=>['a','x','c'])).

Section 3.3: Helpful coding tips

The following is an excerpt from the WebWork Newbie Guide. The link to this guide can be found below.

1. $showPartialCorrectAnswers = 0;
 This corresponds to not revealing which of the answers may be correct. For

example, if the student answers correctly two of the four questions, WebWork
will respond by saying the student has 50% of the parts of the problem correct. If
you set $showPartialCorrectAnswers = 1;, WebWork will indicate which of the
four answers are correct.

2. $a = random(-5,5,1);
a. random(begin, end, incr) produces a pseudo-random number between <begin>

and <end> in increments of <incr>. The default increment is 1, so the statement
$a = random(-5, 5, 1) can be abbreviated $a = random(-5, 5);

3. BEGIN_TEXT ... END_TEXT
 Before we get going, note that comments are *not* allowed between the

BEGIN_TEXT and END_TEXT delimiters, so place your comments outside.
Anything you write in there will be rendered on the screen for students to see.
You can have multiple BEGIN_TEXT and END_TEXT blocks within a program, so
this is not a significant limitation.

 Now what appears between these two delimiters is meant to be rendered for
the student in a number of ways. In general, this code is interpreted and a LaTeX
document is produced. For students who select to receive a hard copy, this
document is TeXed and either a postscript or .pdf output is produced for the
student to view and print.

 Alternatively, the LaTeX document is run through LaTeX2HTML to produce a nice
looking web page on which the student can actually do the homework problem.

 What you write in the text blocks will become either LaTeX code or HTML code.
Thus, the code you write here must be translated into the appropriate language,
and you must learn to use certain generic control sequences to achieve your
goals. Thus for example, a paragraph break in LaTeX is denoted \par, while in

 HTML it is denoted <P>. In the .pg language of WebWork it is denoted $PAR
which gets translated as appropriate. A list of control sequences is found in
PGbasicmacros.pl. They include:

• $PAR — paragraph break
• $BR — line break
• $LQ, $RQ — left and right quotes: ‘‘ and ’’
• \(\) — begin and end math mode as in \(f(x) = \sin(x^2) \)
• \[\] — begin and end display math mode
• $LTS, $GTS, $LTE, $GTE — ¡, ¿, ¡=, ¿= (inequalities)
• $US — underscore (without this LaTeX wants to be in math mode)
• $SPACE — a space (\ in LaTeX, in HTML)
• $BBOLD, $EBOLD — begin and end bold face type
• $HR — horizontal rule across the page
• $LBRACE, $RBRACE — left and right braces: {, }
• $LB, $RB — synonymous with $LBRACE, $RBRACE

4. \{ans_rule(10)\}
 This is clearly a very important construction since it is how you provide a

blank into which students type their answers. The length should provide
adequate space for the answer you expect. Be mindful: if you type
ans_rule(10) all that will be displayed is the text ‘‘ans_rule(10)’’. You have to
bracket the construct with (escaped) braces (\{ans_rule(10)\}) so that the
evaluation routine (EV3) interprets it as an answer box.

5. The construct $a % $b gives the integer remainder of dividing $a by $b, with the
remainder in the interval [0, $b-1].

6. ANS(std_str_cmp($ans));
 This is the standard answer evaluator that handles strings. It is case

insensitive and any white space is treated as a single space. For example,
"Apache really rocks" will be treated the same as "APACHE ReAlLY ROCKS." It
is the most common string function invoked. You can peruse
.../system/courseScripts/PGanswermacros.pl for more details.

7. ANS(std_num_cmp(($m/$n)*(($b - $a)**($m/$n - 1))));
ANS(std_num_cmp($b));
ANS(std_num_cmp(($b - $a)**($m/$n)));

 These are the standard answer evaluators that handle numeric answers.
These compare the answer the student has provided with the correct one
and accept the student answer as correct if it is within .1% of the right
answer. You can change the tolerances which WebWork will use, which is
quite useful if your answers are very large or very small. These answer
evaluators will also accept simple functions as part of the answer.

 Example: If the answer is 1, then exp(0) would be an acceptable
answer. You can also require answers in a more restrictive form.

It is very important that in WebWork code, you use ** and not ^ to denote exponents.
Students may use either in answering a question, but Perl wants the ** in the code of the

problem (Shemanske, 2002).

Part 4: Documentation

There are many additional resources available for teachers and authors of problems. For teachers,
probably the most useful resource is the National Problem Library (NPL), a searchable database which
collects many thousands of problems for instructor use.

To access the NPL, click on Library Browser on the left sidebar of WebWork. From there, it is
easy to select an existing problem set from one of the drop-down menus available under Select a
Problem Collection.

To search for a specific problem, return to the National Problem Library screen, and click on Advanced
Search. Problems can also be searched for on the basis of a subject or a chapter of a specific text.

Problems can then be added to sets as usual.

Be aware that the search function for WeBWorK only allows the searching of one-word
concepts, since it adds an "and" between terms. Searching for "Taylor Polynomials," for instance,
generates no results, but searching for "Taylor" finds over 30, and searching for "Polynomials" finds over
150 results, as of this writing.

WebWork also has extensive documentation meant to help instructors write more complex
problems, including problems involving graphs and sophisticated multipart problems. The
documentation for WebWork may be found here: http://WebWork.maa.org/documentation.html.

Course hosting and access to CMA and Test Set

The first FAQ on the documentation page is “How can I apply for hosting?”. Follow that link to

another, “Requests for hosting…”, which brings up an online request form. There is a free-response box
on the form for “additional information” – be sure to notify MAA that you are using the Calculus:
Modeling and Application text and would like your course to have access to the CMA Library. In the
drop-down for CMA, the first entry is Set0_Test_Set, where you will find the sample problems refered to
above.

Useful links

WebWork Newbie Guide

Basic syntax for Perl

Write/modify Problems The tutorial link on this page is no long being maintained but this information

still can be useful. The new link is: Learning how to Author WebWork problems

Work Cited
Shemanske, T. R. (2002, July 12). WebWork Newbie Guide. Retrieved May 24, 2001, from WebWork

Newbie Guide: http://www.math.dartmouth.edu/~trs/expository-papers/tex/newbie-

1.7/WebWork_newbie.pdf

http://webwork.maa.org/documentation.html
http://www.math.dartmouth.edu/~trs/expository-papers/tex/newbie-1.7/WeBWorK_newbie.pdf
https://math.webwork.rochester.edu/docs/docs/pglanguage/tutorial/perlbasics.html
https://math.webwork.rochester.edu/docs/docs/pglanguage/tutorial/perlbasics.html
http://webwork.maa.org/wiki/Category:Authors

