Chapter 8
Integral Calculus and Its Uses





WeBWorK8.5 Representations of Periodic Functions

Exercises

  1. Write down the value of each of the following integrals. You should be able to do this without any calculation.
    1. \(\displaystyle \int_{-\pi}^{\,\pi} \cos\,5t \,dt\)
    1. \(\displaystyle \int_{-\pi}^{\,\pi} \sin^2\,t \,dt\)
    1. \(\displaystyle \int_{-\pi}^{\,\pi} \cos\,4t \,\cos\,6t\,dt\)
    1. \(\displaystyle \int_{-\pi}^{\,\pi} \cos^2\,5t \,dt\)
    1. \(\displaystyle \int_{-\pi}^{\,\pi} \sin\,2t \,\cos\,7t\,dt\)
    1. \(\displaystyle \int_{-\pi}^{\,\pi} \sin\,3t \,\sin\,5t\,dt\)
  2. Calculate each of the following integrals.
    a.   \(\displaystyle \int_{-3}^{\,3}\, 1\,dt\) b.   \(\displaystyle \int_{-3}^{\,3}\, \sin\,\frac{\pi}{3} t\,dt\) c.   \(\displaystyle \int_{-3}^{\,3} \,\cos\,\frac{\pi}{3} t\,dt\)
    d.   \(\displaystyle \int_{-3}^{\,3} \,\cos\,\frac{2 \pi}{3} t\,dt\) e.   \(\displaystyle \int_{-3}^{\,3} \,\sin^2\,\frac{2 \pi}{3} t\,dt\) f.   \(\displaystyle \int_{-3}^{\,3} \,\cos^2\,\frac{2 \pi}{3} t\,dt\)
  3. Assume \(f\) is a function of the form

    \(\displaystyle f(t)=b_0+a_1\,\sin\, \frac{\pi}{3} t+b_1\,\cos\,\frac{\pi}{3} t+b_2\,\cos\,\frac{2\pi}{3} t\).

    Find a formula for \(f\) if

    \(\displaystyle \int_{-3}^{\,3}\,f(t)\,dt=6\), \(\displaystyle \int_{-3}^{\,3}\,f(t)\,\cos\,\frac{\pi}{3} t\,dt=2\),
    \(\displaystyle \int_{-3}^{\,3}\,f(t)\,\sin\,\frac{\pi}{3} t\, dt=-3\), \(\displaystyle \int_{-3}^{\,3}\,f(t)\,\cos\,\frac{2 \pi}{3} t\,dt=9\).

  4. Assume \(f\) is a function of the form

    \(\displaystyle f(t)=b_0+a_1\,\sin\, \frac{\pi}{5} t+b_1\,\cos\,\frac{\pi}{5} t+b_2\,\cos\, \frac{2\pi}{5} t\).

    Find a formula for \(f\) if

    \(\displaystyle \int_{-5}^{\,5}\,f(t)\,dt=5\), \(\displaystyle \int_{-5}^{\,5}\,f(t)\,\cos\,\frac{\pi}{5} t\,dt=4\),
    \(\displaystyle \int_{-5}^{\,5}\,f(t)\,\sin\,\frac{\pi}{5} t \,dt=-5\), \(\displaystyle \int_{-5}^{\,5}\,f(t)\,\cos\, \frac{2 \pi}{5} t\,dt=20\).

Go to Back One Page Go Forward One Page

 Contents for Chapter 8