Chapter 5
Modeling with Differential Equations
5.6 Derivative Calculations
Exercises
- For each of the following functions, calculate both first and second derivatives.
- \(y=e^{-t}\sin 5t\)
- \(z=x^2\, 3^x\)
- \(w=\cos^3\, 2t\)
- \(w=\cos (2t^3)\)
- \(z=\sin^{-1}x\,\tan 2x\)
- \(w=\sin^{-1}x\,\,\,\,\tan^{-1}\,2x\)
- \(y=\frac{e^{2x}}{\sin 5x}\)
- \(y=\frac{e^{2x}}{\cos 5x}\)
- Calculate each of the following derivatives.
- \(\frac{d}{dx}\,e^{-2x}\,\cos 5x\)
- \(\frac{d^2}{d \theta^2}\,e^{-2\theta}\,\cos 5\theta\)
- \(\frac{d}{dx}\,\left(\ln x^2\right)\,\cos 2x\)
- \(\frac{d^2}{d \theta^2}\,\left(\ln\theta^2\right)\,\cos 2\theta\)
- \(\frac{d}{dt}\,3^{2t}\)
- \(\frac{d^2}{d \theta^2}\,3^{2\theta}\)
- Find the derivative of each of the following functions.
- \(z=7\ln(3+2t)\)
- \(z=\frac{1}{2t+1}\)
- \(y=x^6+4x^2+6x^{-2}\)
- \(z=\frac{7}{3+2t}\)
- \(y=2e^{5x}\)
- \(y=\frac{\sin 2u}{\cos 5u}\)
- \(y=(\sin 2t) (\cos 5t)\)
- \(z=\left(2t+1\right)^{12}\)
- \(y=(\sin^{-1} 2t) (\cos 5t)\)
- \(u=\tan^3\, 2x\)
- Find the derivative of each of the following functions.
- \(y=3\sin t \cos 3t\)
- \(z=\frac{1}{(2t+1)^2}\)
- \(u=\cos^2\, 3t\)
- \(z=\frac{7}{(3+2t)^3}\)
- \(v=\cos(3t^2)\)
- \(y=x^7+3x^2+6\)
- \(y=\sin 2t - \cos 5t\)
- \(z=2^{5x}\)
- \(y=\tan 2t - \cos 5t\)
- \(v=\sin^{-1}\,5y\)